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ROBUSTIFYING THE KALMAN FILTER;

Protection Against Symmetrically Straggling Measurement Errors

D. P. Gaver
P. A. Jacobs

1. INTRODUCTION.

Tracking and prediction algorithms based on simple Gaussian (normal
distribution) measurement errors and structural models are commonly used in
practice under the name of KALMAN Filters. If (a) measurement errors are not
suitably Gaussian, e.g., if occasional outliers occur or (b) true structural
behavior is not simple, perhaps displaying apparently discontinuous behavior
caused by unfavorable sensor-target orientation, then traditional filter
performance may dramatically degrade. In this paper, we will propose and
study procedures based on an elaborated model of the KALMAN-type but with
the measurement errors coming from a family of possibly suitable non-Gaussian
distributions (e.g., Student-t) to represent, and suitably compensate for more-
thick-tailed-than-Gaussian measurement error, i.e., distributions with long
straggling tails having the tendency to produce symmetric outliers.

In particular the basic stochastic model considered here is

On = On-I +(o~n(.)

Yn= On + E (1.2)

where { on) are independent normal/Gaussian random variables with mean 0

and variances ({n} and {en] are independent random variables having mean 0.

The random variable On is unobservable. The random variable Yn is interpreted

as the observation of On made with measurement error En; En is not Gaussian,

but controllably long-tailed. The problem is to estimate On from Y1,..., Yn in
the simple recursive fashion that characterizes the classical KALMAN filter.
Expression (1.1) is a simple random walk and does not represent very
interesting dynamics, but does provide suggestive illustrations.

In the next, or second, section, we will describe a procedure, the ALMA
(standing for KALMAN with outliers suppressed), which is based on a model in
which the components of the error sequence {ln} have a Student-t distribution.

4

I'-' % " ' - ".'% , % "- " - ,". s % , -=-'
%

" " ' '" "'". . '''
" '

",' -" " "" ' -- ' ," ' ". - " % 
"



In the third section, the traditional KALMAN procedure will be
described. It is based on the assumption that components of {n I have iid
normal distributions. Finally, a robust procedure due to West 119811 will be
described.

In section 4 results of an extensive simulation experiment will be
presented and discussed. The simulation experiment compares the various
procedures. The results indicate that the ALMA procedure is significant!y
better than the KALMAN when the true measurement error distribution is
Student-t. Further, there is not much lost in using the ALMA procedure instead
of the KALMAN when the true measurement error distribution is normal.

2. THE ALMA FILTER AND RELATED PROCEDURES.

While many measurement errors of physical quantities are approximately
normal, especially "in the middle" of their distribution, there can well be
thicker-than-normal/Gauss tails and also occasional extreme outliers; that these
can have seriously degrading effects in regression-like problems has been the
subject of considerable research; we cite books by Mosteller and Tukey (1977),
Huber (1981), Hampel (1986); in the time-series context the article by Martin and
Yohai (1986), which contains many references; also lately the articles by West
and his associates (1981,1985); it is to West's approach that our methodology
should best be compared.

One way to model these features is to extend the tails of the normal by
continuous scale mixing. Such an approach can lead to the Student-t form, and
to many other useful forms as well. We will assume here that {En} are
independent random variables, now having in the Student-t distribution with
mean 0, scale on (not the standard deviation) and d degrees of freedom; that is,

d+I

Pn (u) = c(d jj) + L 2 (2.1)
;n

Let yi denote the ith measurement and yn = (yl, .... Yn). Assume that n-

,I yn-I has a normal distribution with mean mn 1 and variance Cn-l. Since On is
assumed to have a normal distribution with variance Tn, 0nl yn-1 has a normal

:n 'I'
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distribution with mean mn-1 and variance Cn=Cn-I+Tn. Thus, from (1.1), (1.2),

and (2.1)

P (0ne d,Ynedy I Yl=Y,...,Yn..iYni)

-p -2" 121 2 £]dOdy (2.2)

-X Idll 
I0ty) I']

Kexp [-o" ((y)) 2 + 1Qy d~dy

where the approximation replaces the expression in the exponent by an
approximating quadratic in 0.

2.1 The ALMA Procedure,

The ALMA procedure provides a Gaussian approximation to the
distribution of On I yn, but one that emphatically differs from the classical linear-
in-observations form. Following an argument in Gaver et al. [ 1986],
differentiate both sides of (2.2) with respect to 0 to obtain

0-g(y) 0-mn.l d+l 0-y I
TY) - + n I +t.o.y 1 (2.3)

((Fn) d

Equating the terms involving 0 results in the following equation:

Accession For1 1 1-

O: C + (Y)W) NTIS GRA&I (2.4)
;i DTIC TABn n Unannounced "

Justifloation
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Distribution/

AvallabilitY Codes
SAva and t/
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where the weight

d+ 1 (2.5)w~y) - +( ) fr''

Furthermore, equating the constant terms results in

WY)= + w(y) - . (2.6)

The ALMA procedure approximates OnI yn by the normal distribution
having mean

mn = C [mn nn- + W(Yn)Yn (2.7)

and variance

-1

n+W (Y n) (2.8)

where

d+1 1 (2.9)
1 -d + ( O -n ) 2 1

Note that the weight w(yn) involves the unknown 0. One implementation
uses approximate weights of the form

wk(Yn) = d+ 1 (2.10)

Wk(YNd l+ [

When k=l, mn- I is used in place of 0 in (2.9).
When k=', 0.5(mn_1 +Yn) is used in place of 0.



The basic ALMA procedure is to evaluate wk(Yn) and then use it to find

-1

cn[L+wk(Yn) I 1(2.11)

and +wk(Yn)Yn '

Mn =Cn 7 !. Wk(Yn+Yn (2.12)

The point estimate of On given yn is On=m n and an estimate of the variance

of On is Cn. Thus the procedure provides a particular Gaussian posterior
approximation. In other similar contexts, non-linear filters for example, it has
been suggested that the procedure (2.10) - (2.12) be iterated with the newly-
computed mn, replacing mn _ 1 in (2.10) - (2.12) in each iteration. In the
simulations 0, 1 and 2 iterations were implemented, and the results compared.

2.2 The Biweight.

The ALMA procedure is an iterative reweighting procedure. In the
ordinary regression context another weight has been suggested: the so-called
(Tukey) biweight, cf. Mosteller and Tukey (1977). In our context, the biweight
procedure can replace the weight wk(y) in the ALMA procedure with the
biweight

ry1ni(an)=~ if2 k L u- (-i2-Ifaa~d (2.13)Ii jf J (<1mn fa
0 otherwise.

The variance of a Student-t distribution with d degrees of freedom and

scale o is C2 d if d>3, otherwise being infinite. Hence the (bi)weight wB(y) uses

the measurement y if I y I is within a standard deviations of mnI, the estimate of
0 n-1. The weight is zero if the deviation is greater.

As was done in the basic ALMA procedure, 0, 1, and 2 iterations of
(2.10)-(2.12) were tried, with wB(yn) replacing wk(Yn), for values of a=5, 7, 9
and k=l, 0.25.

&' Z - ,-.
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2.3 Aspects of the Likelihood Procedure.

It is possible for the likelihood function (2.2) to exhibit two local 0-
maxima. In such a case, the likelihood procedure approximates the local
maxima and chooses the one which globally maximizes the likelihood.

To examine the details let

df(O) =d-nP(e dO,Y edy)
dO n n

-/?O-rn' d + I (-O) 1 YO-(214

+ d 1._OJ ] Jdedy. (2.14)

Now it is clearly possible for f(0)=O to have multiple roots. To be
specific, f(0)--O for those 0 satisfying

0 = 03+02(-2y-m.) (2.15)
n-

+0[02d + y2+(d+l)C* + 2ym~l]

+ [-m 02-d-m y (d+)yC#].

The properties of this cubic-in-0 equation can be deduced from classical
results.

ZI



Let

D = m (2.16)

___ 1 2I
+ CYn ) 2d 2-5d(d+l) ,2 -4 (d+1)

3

+ d+(d+) ]

then if

D>0 (2.15) has 1 real root and two conjugate imaginary roots;

D=O (2.15) has 3 real roots, at least two of which are equal;

D<O (2.15) possesses 3 real and unequal roots.

Note that if d=,o so that En has a normal distribution, then certainly D>O
and (2.2) has a unique maximum. If d<.o, and C#, 2 is small enough, then D>Onfn

and once again (2.2) will have a unique maximum. If d<-o and _,a is largefnn

enough (actually, larger than d+l d hi
2

values of (y-mn ,) and (2.15) will have 3 real unequal roots; in this case (2.2) will
have two local maxima.

A.



The likelihood procedure computes D. If D>O it uses the ALMA
procedure with weight

-1

Wy)=d+ 1 1Y U-ff'l) 2 k-- (217
wi(Y=T a n ) (217_

to compute On. If D<0, then two candidate estimates 01, and 02 of 0 are
computed. Both estimates are obtained via the ALMA procedure (2.7)-(2.9).
One approximates weight (2.9) by setting O=mn-I as in (2.10); think of the result
as prior-dominated. The other approximates weight (2.9) by setting 0=y,so that

d+1w(y) = -; the result is data-determinated. The likelihood function is then

evaluated at each value of 0:01 and 02. The quoted estimate of 0,n is set equal to

the 0i that comes closest to maximizing the global likelihood; the estimate of the
variance is set equal to the corresponding Cn.

3. THE KALMAN AND WEST PROCEDURES.

In this subsection, the traditional KALMAN procedure will be described
for the model (1.1)-(1.2). A procedure proposed by West (1981) will also be
discussed.

3.1 Th'e KALMAN Procedure,

The KALMAN filter finds the estimate bn of On which minimizes the

conditional mean square error of (6)n-0n) given yn. If En ) are independently

normally distributed with mean 0 and variances {yn}, then the KALMAN filter
can be viewed as a Bayesian updating procedure; see Meinhold and Singpurwalla
(1983).

The Bayesian KALMAN procedure assumes On.Ilyn-i is normal with mean
mn _ and variance C,.-. Thus, from (1.1) 0nIyn I is normal with mean mn.I and
variance Cv=Cn.1 +tn. From (1.2)

[I (0n-mn-l) 2 (Yn)2}

P(OnE dO,YnE dy yn l) = K exp " # -dy (3.1)
nC

5'.

o .



p

ex][pmk+ + y.(3.2)
2p

Thus On I yn has a normal distribution with mean

mn =Cn T--au + (3.3)C# 7

and variance

Cn= + I # (3.4)

The estimate of On given yn is then

gn = mn (3.5)

and an estimate of the variance of On is Cn.

Comparing (3.3)-(3.4) with (2.10)-(2.12) indicates that, if Yn is close to
mn_ 1, then the ALMA procedure will closely resemble the KALMAN. In

2
particular, if yn = an and d--oo, the 2 estimators are identical. However, if Yn is

far from mn- 1, then the ALMA procedure will tend to discount that observation,

relying on its estimate of 0n-1 to strongly influence its estimate of On. This
behavior implies that the ALMA procedure will be less quickly responsive to
changes in the values of On than will be the KALMAN. This is the price paid for
robustness to outlying measurement errors: KALMAN treats all changes in
observations as representative of structural (On) changes; ALMA is more
tentative. Of course ALMA may be tuned towards KALMAN by increasing the
d-value.

3.2 The West Procedure.

2 %.



West proposes an estimation procedure for On given yn in the case in
which the density pe is symmetric about 0. In the special case in which pn is

normal, West's procedure reduces to the KALMAN filter.

Once again, assume On-1 I yn-I is normal with mean m n_ I and variance

Cn_1 so that Onlyn-1 is normal with mean m.l 1and variance Cn=Cn-1 + Tn.

P( EdO, YnEdyIYI=Y .... Yn-I=Yn-i)

=Kex "fn(Omnl)2Cn p. (y-0) (3.6)
Cn n

-KexP[+ O-MlI)2 7n +(In p. n(Y-mn-i) + g(Y-M-j(O-Mnj- G(Y-mn)'))] ddy (3.7)

where a Taylor expansion provides
-d(38g(u) = pn ()(38

_d2

G(u) = - i7n (u). (3.9)

Completing the square in (3.7) results in

P [0nE dO,Yn- dy I =Yl ....Yn-l=Yn-l]

exp C- + G(y-mn-) (-)-g(y-mn-I)-l+ G(-mn.ij . (3.10)

Hence, P{0Ind I Y1=y1 . ...Yn=Yn) is approximated by a normal
distribution having mean

m n =ran I + Cng(yn-mn. 1) (3.11)
,.P

.4:
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and variance

In the special case in which Fn has a Student-t distribution with d degrees

of freedom and scale parameter Gn,

-(d+I)

p (u)=c(d)"-L 1+ U n ] 2 (3.13)

g(u)- d 1+(1+ 2 1 (3.14)
(1.

(7n n

and

d+1 1 I (3.15
G(u) =T + u

Since G(yn-mn-1) is playing the role of a variance in (3.10), but may
become embarrassingly negative for large u, West suggests that it be replaced by
max(0,G(yn-mnl)); this step has been taken in the simulations that illustrate the
various procedures proposed here. West suggests another possibility in West et
al. (1985).

4. A SIMULATION EXPERIMENT.

All simulations were carried out on an IBM 3033AP computer at the
Naval Postgraduate School. Random numbers were generated using the
LLRANDOMII random number package; cf. Lewis and Uribe (1981).

For each replication of the simulation the model of (1.1)-(1.2) is generated
for n=0,1 .. ,100. In the simulations reported below {)n} are iid normal with



mean zero and variance one. For each replication, estimates bn of On given yn

are computed using each of the procedures described above. The data collected
are the estimation error 6n - On for n=25, 50, 75, 100 and the estimate of
variance Cn, n=25, 50, 75, 100. The number of independent replications is
1000.

Tables I and 2 report results of the KALMAN and ALMA procedures for
simulations in which {n} are iid normal with mean zero and variance one. The
ALMA procedure actually uses the incorrect measurement error model that
{n} are iid Student-t with d=3 degrees of freedom and variance equal to one.
Results for the ALMA procedure are shown for weights as in (2.10), for k=1.0
and k=0.25. The procedure was iterated 0, 1, and 2 times.

Table I shows statistics of 6n-On for n=25, 50, 75, 100. As anticipated, the
KALMAN procedure which uses the correct (normal) model exhibits the
smallest variance of bn - On. The ALMA procedure with k=0.25 and 0 iterations
and the ALMA procedure with k=l and 1 iteration have the smallest variances
for the ALMA procedures.

Table 2 exhibits the estimates of the variance of O, namely Cn,for the
ALMA procedure for n=25, 50, 75, 100. The KALMAN estimate of the
variance is the constant 0.618 for all of these n. This constant is the limiting

solution to equation (3.4) with Tn = Yn=1; that is, with C= limCn
n- -coo

11

+1

a simple quadratic with appropriate solution

1 +43
C = - -= 0.618.

The variance of 6n-On for the KALMAN procedure in Table 1 is close to
the calculated 0.618.

The mean values of Cn for the ALMA procedure with k=0.25 and 0
iterations and k= I with I iteration are about half that of the corresponding
variances of 6n--n in Table 1.



Tables 3-4 report rcsults for a simulation in which {Fn) are iid Student-t
with 3 degrec.s of freedom ancl va iance equal to 1. Table 3 reports statistics of

the estimation error, 6n--n, for taie KALMAN, ALMA, Biweight, Likelihood,

and West procedures. As usual, the KALMAN procedure assumes {C} are iid

normal with mean () and vlniance 1. The other procedures assume {Fn are iid
Student-t with I d(eirec, ot freedoni and variance equal to 1. The ALMA

procedure with k -.-. '5 and iiu Herut '.ors exhibits the smallest variance of bn - On.
The more conpllca, ,ike uht d tprocedure with k-0.25 and no iterations
exhibits the next -'ailt-,l va:'ian. ' e ' AMA with k= and I iteration
exhibits the third m a a .

The l ,iwi., ,cdurr wd- intplement,:,d with the constants in the weight

(2.13) a=5,7.Q and 1: ,,, id the procedure was iterated 0,1, and 2 times.
The results for a::5 .yoe u.h wn1;r1 than those for a=7 and 9 indicating that
a=5 is not large cn ,; lo jyi. oUf l,:ig values; they are not reported.
Iterating the hiwe1Tht p,',ce,,nrC e anwd 2 times did not improve the results for
any values of a. '11c rc:,ults t' Tablc 7 indicate that the biweight procedure with
the smallest variance us , k=t.() and a=7 with no iterations.

The West procc(irv dce.;le r-cd i n West (1981 ) as currently implemented
does not do as well as tec KALMAN. The statistics of Cn in Table 4 seem to
indicate that the difficu!i'y is v.% h the estimate of variance, C; the fix for
negative G(y-m mak,.es i, pvshlc for C, to increase by one in successive
times over long perids oft tiC.

Table 4 exhibits the : tatl'tu, of (an. lhe KALMAN procedure, the

ALMA procedure wih k=0.25 and 0 iterations, the ALMA procedure with k=1
and I iteration, the Lic!ihkood )rcedure with k=0.25 and 0 iterations and the

Biweight with kzi, a=7 all have ina, Cn approximately half the variance ofbn-
On.

5. CONCLIUS()NS.

The s;imu Li ii r,, , ed to date indicatt that a satisfactory robust
KAI MA N:zA1 ., ,' 'U, u I ',, th k (?.23 eight-starting option and
requires no Ieratiu; . V 'i, ,i otI,,.-' tile i i>. about 71 less efficient than the
KALMAN when ineaturcmciii cn urs are ideally (iaussian, it is about 6% more
efficient when errs ar Iez, ,,11Ced nn-Gau,.,,ian; etliciency is in terms of
ratios of esti matd.(- ta ic:.<; !iu ., ri t the olv nteaniigful criterion.
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Examination of Table 3 reveals through values of skewness, and kurtosis , that as
anticipated, the robust ALMA estimation errors are substantially more closely
Gaussian than are the corresponding KALMAN products when measurement
errors are Student-t.

lo
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Table 1
Statistics of bn-0n

Normal Measurement Errors with Variance 1

Time n: 25 50 75 100
ProcNbr k MV S K MV S K MV S K MV S K

Iter
K - 0.00 0.61 0.04 0.01 0.02 0.620.01 0.15 0.03 0.63 0.02 0.29 0.00 0.60.0.05 0.19
A 0 1.0 -0.02 0.91 0.07 0.60 0.03 0.77 0.21 1.40 0.01 0.78 0.01 0.18 0.01 0.840.19 0.78

025 0.00 0.65.0.02 0.07 0.03 0.65 0.04 0.03 0.02 0.64 0.01.0.14 0.00 0.67 .05X 0.17
A 1 1.0 0.01 0.700.05-0.02 0.04 0.69 0.15 0.62 0.01 0.680.00 0.02 0.03 0.730.06-0.01

0.25 0.02 0.70 0.00 0.07 0.03 0.76 0.02,0.09 0.03 0.74 0.044.10 0.00 0.75 0.02.0.30
A 2 1.0 0.01 0.71 0.02 0.09 0.04 0.75 0.06 0.06 0.02 0.72 0.01 0.04 0.00 0.76 .0.01 -0.25

0.25 0.02 0.77.0.01 0.11 0.02 0.83 0.02.0.10 0.03 0.82 0.04 0.09 0.00 0.81 0.04031

Procedure (Prcr.) Statistics
K = KALMAN M = Mean
A = ALMA V = Variance

S = Skewness
K = Kurtosis

-I.
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Table 2

Statistics of Cn
Normal Measurement Errors with Variance 1

Time n: 25 50 75 100
Proc Nbrk M V M V M V M V

lter
A 0 1.0 .50 .08 .49 .07 .48 .06 .48 .07

0.25 .31 .01 .30 .01 .30 .01 .30 .01
1 1.0 .23 .02 .22 .02 .22 .02 .22 .02

0.25 .04 .00 .14 .00 .14 .00 .13 .00
2 1.0 .14 .01 .13 .01 .13 .01 .13 .01

0.25 .09 .00 .09 .00 .09 .00 .09 .00

Procedure (Pro.. Statistics

A=ALMA M=N4=n
V =Varianxe

l l

-*"1 ' ' , m • " ." -. ",p o ,. "" = m 'l . '. 
°

. . . °% b •% ~



Table 3
Statistics of 6n-0n

Student-t Measurement Errors with 3 degrees of freedom and Variance 1.

Time n: 25 50 75 100
ProcNbr k a M V S K M V S K M V S K M V S K

Iter
K - - 0.01 057 0.48 2.7 0.02 0534).02 22 0.02 0.67 0.78 8.7 0.04 0.54-0.17 1.7
A 0 1.0 0.03 0.67 0.07 1.0 0.02 0-58 0.08 1.1 0.02 0.71 .0.02 1.4 0.01 0.65-0.10 1.7

0.-15 0.01 0.53 4.16 1.6 0.01 0.480.08 1.5 0.02 0.5740.01 21 0.02 0.50-0.26 2-3
A 1 1.0 0.01 0.55 .0.09 1-5 0.01 0.49.0.09 1.2 0.02 0.61 0.01 1.8 0.01 0.52.0.23 2.4

0.25 0.01 0.63 0.46 4.1 0.01 0.58 0.03 3.1 0.03 0.69 0.06 3.5 0.03 0.58 0.2D 2.7
A 2 1.0 0.01 0-58 4.16 2.4 -0.01 0-540.05 1.6 0.03 0.64 0.02 1.9 0.02 0.540.26 2.6

0.25 .0.02 0.71 4).66 5-5 0.01 0.66 0.09 43 0.03 0.79 0.18 4.9 0.04 0.64 .0.05 2.9
B 0 1.0 7 0.01 0.56 -0.17 2.5 0.01 0.51 0.07 2.2 0.02 0-59 0.09 2.6 0.02 0.52 0.31 2.4

0.25 7 0.01 0.61 0.68 5.2 0.01 057 0.04 3.9 0.03 0.69 035 6.0 0.04 0.56 0.13 2.7
B 0 1.0 9 0.01 0-57 -0.42 3.5 0.01 054 4.00) 3.0 0.02 0.62 .0.07 33 0.03 0.53 .0.22 2.5

0.25 9 0.01 0.63 0.76 5.7 0.01 0-57 0.05 4.1 0.03 0.72 0.75 9.9 0.04 0.57 .0.11 2.8
L 0 1.0 - 0.03 0.68 0.12 1-5 0.03 0.560.0) 1.0 0.03 0.690.02 1-5 0.01 0.65.0.13 1.8

0.25 0.01 0-54 -0.23 1.7 0.01 0.48 0.11 1-5 0.03 0.600.04 2-1 0.02 0.52 0.29 2.5
L 1 1.0 0.01 0.55 .0.13 1.7 0.01 0.49-0.09 1.2 0.02 0.61 0.01 1.8 0.01 0.52 0.23 2.4

0.25 .0.01 0.63 0353 4 1 0.00 0-57 0.07 2-8 0.03 0.69 0.07 3.4 0.03 0.58 0.20 2-7
L 2 1.0 0,00 059 0-22 25 0.01 0-53 0.08 1.6 0.03 0-53 0.02 1.9 0.02 0.54 426 2.6

0.25 0.02 0.72 0.70 5-5 0.00 0.65 4.01 3.9 0.03 0.79 0.18 4.9 0.04 0.64-0.05 2.9
W - - 0.06 112 0.26 3.2 051 384 0.14 43 0.08 774 0.03 5.1 0.791249.0.25 5.2

Procedure (Prc,) Statistics
K = KALMAN M = Mean
A = ALMA V = Variance
B = Biweight S = Skewness
L = Likelihood K = Kurtosis
W = West
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Table 4
Statistics of Cn

Student-t Measurement Errors with 3 degrees of freedom and Variance 1.

Time n: 25 50 75 100
Proc Nbr k a M V M V M V M V

Iter
A 0 1.0 .46 .07 .44 .06 .48 .07 .45 .06

0.25 .29 .01 .28 .01 .29 .01 .29 .01
A 1 1.0 .21 .02 .20 .02 .21 .02 .21 .02

0.25 .13 .00 .13 .00 .14 .00 .14 .00
A 2 1.0 .13 .01 .12 .01 .13 .01 .13 .01

0.25 .09 .00 .09 .00 .09 .00 .09 .00
B 0 1.0 7 .29 .01 .29 .00 .29 .01 .29 .00

0.25 7 .27 .00 .27 .00 .27 .00 .27 .00
B 0 1.0 9 .28 .00 .28 .00 .28 .00 .28 .00

0.25 9 .27 .00 .27 .00 .27 .00 .27 .00
L 0 1.0 - .44 .06 .44 .06 .46 .06 .46 .06

0.25 .29 .01 .28 .01 .29 .01 .29 .01
L 1 1.0 .21 .02 .20 .02 .21 .02 .21 .02

0.25 .14 .00 .14 .00 .14 .00 .14 .00
L 2 1.0 .13 .01 .12 .01 .13 .01 .13 .01

0.25 .09 .00 .09 .00 .09 .00 .09 .00
W - - 8.8 64 16 240 23 543 29 946

Proedure'(Proc3 tast¢
A=ALMA M=Mean
B=Biweight V=Variance
L = Likelood
W = West
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